Indicators
Method |
---|
FrontContainer |
Exact Hypervolume |
dimension_type hypervolume() const |
dimension_type hypervolume(key_type reference_point) const |
Monte-Carlo Hypervolume |
dimension_type hypervolume(size_t sample_size) const |
dimension_type hypervolume(size_t sample_size, const key_type &reference_point) const |
Cardinality |
double coverage(const front &rhs) const |
double coverage_ratio(const front &rhs) const |
Convergence Indicators |
double gd(const front &reference) const |
double igd(const front &reference) const |
double igd_plus(const front &reference) const |
double hausdorff(const front &reference) const |
Standard deviation of Convergence Indicators |
double std_gd(const front &reference) const |
double std_igd(const front &reference) const |
double std_igd_plus(const front &reference) const |
First Front Distribution |
[[nodiscard]] double uniformity() const |
[[nodiscard]] double average_distance() const |
[[nodiscard]] double average_nearest_distance(size_t k = 5) const |
[[nodiscard]] double average_crowding_distance() const |
Point Distribution |
double crowding_distance(const_iterator element, key_type worst_point, key_type ideal_point) const |
double crowding_distance(const_iterator element) const |
double crowding_distance(const key_type &point) const |
Conflict / Harmony |
dimension_type direct_conflict(const size_t a, const size_t b) const |
[[nodiscard]] double maxmin_conflict(const size_t a, const size_t b) const |
[[nodiscard]] double conflict(const size_t a, const size_t b) const |
Normalized Conflict / Harmony |
[[nodiscard]] double normalized_direct_conflict(const size_t a, const size_t b) const |
[[nodiscard]] double normalized_maxmin_conflict(const size_t a, const size_t b) const |
[[nodiscard]] double normalized_conflict(const size_t a, const size_t b) const |
ArchiveContainer |
Cardinality |
double coverage(const front &rhs) const |
double coverage_ratio(const front &rhs) const |
Convergence Indicators |
double gd(const front &reference) const |
double igd(const front &reference) const |
double igd_plus(const front &reference) const |
double hausdorff(const front &reference) const |
Standard deviation of Convergence Indicators |
double std_gd(const front &reference) const |
double std_igd(const front &reference) const |
double std_igd_plus(const front &reference) const |
Parameters
reference_point
- point used as reference for the hypervolume calculation. When not provided, it defaults to thenadir()
point.sample_size
- number of samples for the hypervolume estimaterhs
- front or archive being comparedreference
- Target front. An estimate of the best front possible for the problem.k
- number of nearest elements to considerelement
- element for which we want the crowding distance (see below)key_type
- point for which we want the crowding distance (see below)worst_point
,ideal_point
- reference extreme points for the crowding distancea
,b
- dimension indices
Return value
- (see section Indicators for fronts)
Complexity
- (see section Indicators for fronts)
Notes
The archive indicators use their first front as reference.
Example
Continuing from the previous example:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
|